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Query complexity
Let f : {−1, 1}n → {−1, 1} be a Boolean function.
Goal: for any given input x ∈ {−1, 1}n, compute f (x) by reading
as few bits as possible from x .
Equivalently, compute f (x) using an algorithm that invokes the
following oracle the least number of times:

• f is known to the algorithm.
• input x is not known to the algorithm.
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Quantum query complexity
In the quantum setting we have the following quantum oracle:

Quantum query complexity Q(f )
Minimum number of quantum oracle Ox in a quantum circuit
that for every input x , outputs f (x) with error ≤ 1/3.
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Why query complexity
• Algorithmic Motivation.

• Most quantum algorithms are naturally phrased as query
algorithms. E.g., Shor, Grover, Hidden Subgroup, Linear
systems (HHL), etc.

• Algorithms often transfer to the circuit model, while the
query complexity abstraction gets rid of unnecessary details.

• Complexity Motivation.
• We can prove statements about the power of different

computational models!
• E.g., exponential separation between classical and quantum

algorithms.
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The k-distinctness problem
DISTk

N,R
Given N numbers in range of size R , does any number appear
≥ k times?
• For k = 2 it becomes Element Distinctness problem, which is

an important function with a long history throughout TCS and
is well-understood.

• For k > 2, quantum query complexity of k-distinctness
remains open.

• It has connections to finding multi-collisions in hash functions,
which is highly relevant to cryptography.

• k is constant throughout the talk unless explicitly stated
otherwise.
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Historical results of k-distinctness
• For k = 2, Element Distinctness (ED) had been shown to

satisfy Q(ED) = Θ(N 2
3 ) [AS04, Amb07].

• For k > 2
• Upper bound:

• Q(DISTk
N,R) = O(N k

k+1 ), quantum walks [Amb07].
• Q(DISTk

N,R) = O(N
3
4 − 1

2k+2−4 ), learning graphs [Bel12].
• Lower bound:

• Q(DISTk
N,R) = Ω(Q(ED)) = Ω(N 2

3 ) [AS04].
• Q(DISTk

N,R) = Ω̃(N 3
4 − 1

2k ), polynomial method [BKT18].
• Q(DISTk

N,R) = Ω̃(N 3
4 − 1

4k ), our result, polynomial method.
• Our lower bound result shows for the first time that for

4-distinctness is strictly harder than Element Distinctness.
• Our lower bound result also applies to more general

approximate degree.
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Approximate degree
ϵ-approximation
A polynomial p : Rn → R ϵ-approximates a Boolean function
f : {−1, 1}n → {−1, 1} if

|p(x) − f (x)| < ϵ ∀x ∈ {−1, 1}n.

• d̃egϵ(f ) = minimum degree needed to ϵ-approximate f .
• d̃eg(f ) := d̃eg1/3(f ) is the approximate degree of f .
The connection between approximate degree and quantum query
complexity is due to the seminal result [BBC+01]:

Q(f ) ≥ 1
2d̃eg(f ).

• We show that d̃eg(DISTk
N,R) ≥ Ω̃(N 3

4 − 1
4k ), for constant k .
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Summary of results
Lower bound result
For any constant k ≥ 2, the approximate degree and quantum
query complexity of the k-distinctness function with domain size
N and range size R ≥ N is Ω̃(N 3

4 − 1
4k ).

Upper bound result
For any k ≤ polylog(N), the approximate degree of
k-distinctness is Õ(N 3

4 ).
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Approximate degree upper bound
Upper bound result
For any k ≤ polylog(N), the approximate degree of
k-distinctness is Õ(N 3

4 ).
• The previous best result [Bel12]

Q(DISTk
N,R) = exp(O(k)) · O(N

3
4 − 1

2k+2−4 ).
• This becomes linear for k ≥ Ω(log(N)).
• The approximate degree upper bound result does not imply a

quantum query complexity upper bound, but it implies that
polynomial method cannot yield a better than N 3

4 lower bound
for Q(DISTk

N,R).
• An upper bound on the quantum query complexity of

(log n)-distinctness would imply an upper bound for
min-entropy estimation [LW19].
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Lower bound techniques
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Approximate degree lower bound technique
What is best error achievable by any degree d approximation of
f ?
Primal LP (Linear in ϵ and coefficients of p):

minp ϵ

s.t. |p(x) − f (x)| ≤ ϵ for all x ∈ {−1, 1}n

degp ≤ d

Dual LP:
maxψ

∑
x∈{−1,1}n

ψ(x)f (x)

s.t.
∑

x∈{−1,1}n
|ψ(x)| = 1

∑
x∈{−1,1}n

ψ(x)q(x) = 0 whenever degq ≤ d
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Dual Characterization of Approximate Degree
Fact: d̃egϵ(f ) > d iff there exists a function ψ : {−1, 1}n → R
with

(1)
∑

x∈{−1,1}n
ψ(x)f (x) > ϵ “high correlation with f ”

(2)
∑

x∈{−1,1}n
|ψ(x)| = 1 “L1-norm 1”

(3)
∑

x∈{−1,1}n
ψ(x)q(x) = 0, when degq ≤ d “phd(ψ) > d”

Such a ψ is called a dual polynomial.
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Connection between DISTk
N ,R and composed functions

Theorem [BKT18]
Let N , R ∈ N and 2 ≤ k ≤ N be any integer. Then for any ϵ > 0,

d̃egϵ(DISTk
N,R+N) = Ω

(
1

log R · d̃egϵ(ORR ◦ THRk
N)≤N

)
.

• ≤ N denotes the the domain is restricted to inputs of
Hamming weight less than N .

• ORN : {−1, 1}N → {−1, 1} equals 1 if x = 1N , and −1
otherwise.

• Threshold function THRk
N : {−1, 1}N → {−1, 1} equals 1 for

inputs of Hamming weight less than k , and −1 otherwise.
• Hamming weight is the number of −1 in a given input string.
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Dual formulation
Find a dual witness Γ for (ORR ◦ THRk

N)≤N . Γ must satisfy the
following properties:
• Normalization: ∥Γ∥1 = 1.
• Pure high degree: There exists a D = Ω̃

(
N 3

4 − 1
4k
)

such that
for every polynomial p : {−1, 1}RN → R of degree less than
D, we have ∑x p(x)Γ(x) = 0.

• Correlation: ∑x Γ(x)(ORR ◦ THRk
N)(x) > 1/3.

• Exponentially little mass on inputs of large Hamming

weight: ∑x /∈({−1,1}RN)≤N |Γ(x)| ≤ (2NR)−Ω̃

(
R

3
4 − 1

4k
)

for all
x /∈ ({−1, 1}RN)≤N (strong dual decay).
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• We alter dual polynomial Λ in [BKT18].
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Dual constructions in [BKT18]
Construct three individual dual polynomials θ,ϕ and ψ.

ORR ◦ THRk
N︸ ︷︷ ︸

Λ

= ORR/4k︸ ︷︷ ︸
θ

◦︸︷︷︸
⋆

OR4k︸ ︷︷ ︸
ϕ

◦︸︷︷︸
⋆

THRk
N︸ ︷︷ ︸

ψ

Dual block composition ⋆
Let θ : {−1, 1}n → R,ϕ : {−1, 1}m → R be any functions. Let
x = (x1, ... , xn) where each xi ∈ {−1, 1}m. Define the dual block
composition θ ⋆ ϕ to be

θ ⋆ ϕ(x) = 2nθ(sgn(ϕ(x1)), ... , sgn(ϕ(xn)))
n∏

i=1
|ϕ(xi)|.

We need to make sure four conditions of Λ are satisfied:
normalization, pure high degree, correlation and strong
dual decay.
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Four conditions of dual polynomial Λ
• Dual block composition generically preserves necessary

conditions for normalization, pure high degree, and dual decay.
• But for correlation it needs novel analysis:

• Usually correlation does not hold automatically after dual
composition.

• Heavily rely on ψ correlating very well with THRk
N in

[BKT18].
• Requiring such high correlation between ψ and THRk

N hurts
the final degree lower bound
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Our modification to Λ
Our solution to improve correlation: inspired by [She12], alter Λ
again by attaching a polynomial p to it:

Γ(x) = (θ ⋆ ϕ ⋆ ψ′)(x) · p (x) .

This is a variant of dual composition that improves correlation.
• We modify p to account for refined error notions that arise in

the analysis of k-distinctness.
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Open questions
• Can we do better than our Ω̃(N 3

4 − 1
4k ) lower bound for

k-distinctness?
• Recall the best upper bound is O(N

3
4 − 1

2k+2−4 ) [Bel12].
• Liu and Zhandry [LZ19] showed that the quantum query

complexity of a certain search version of k-distinctness is
Θ(N

1
2 − 1

2k −1 ). This may suggest 3
4 − 1

exp(O(k)) is the right
exponent for k-distinctness.

• We suspect that techniques based on
dual-block-composition have reached their limit.

• Intermediate Goal: improve over the long-standing Ω(N 2
3 )

lower bound for 3-distinctness.
• A quantum query complexity upper bound for

(log n)-distinctness?
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